博客
关于我
判断数据的现象(递增、减小、稳定、无序)
阅读量:690 次
发布时间:2019-03-17

本文共 356 字,大约阅读时间需要 1 分钟。

在嵌入式行业中,判断数据的趋势往往是至关重要的。以下程序可以用来判断一组数据是递增、递减、稳定还是无序。该程序通过对数据点之间的相对关系进行分析,来确定整体趋势。

程序的主要逻辑如下:首先,定义了一个枚举类型来表示不同趋势的状态。然后,为一组数据的趋势判断提供了一个递归函数。函数ordered()接受数据指针和数据长度作为输入,返回一个代表趋势的整数标识。

当数据只包含一个元素时,函数直接返回稳定状态。对于多于一个元素的数据,函数首先比较第一个和第二个元素之间的关系。如果有递增、递减或稳定迹象,函数会继续分析剩余的数据。如果发现矛盾的趋势,则返回无序状态。

程序的主函数main()中,定义了一组示例数据并调用了ordered()函数来获取趋势信息,最后输出结果。这种方法可以有效地分析数据序列的趋势特征。

转载地址:http://sljhz.baihongyu.com/

你可能感兴趣的文章
Nuget~管理自己的包包
查看>>
NuGet学习笔记001---了解使用NuGet给net快速获取引用
查看>>
nullnullHuge Pages
查看>>
NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
查看>>
null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
查看>>
Numix Core 开源项目教程
查看>>
numpy
查看>>
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>
numpy中的argsort的用法
查看>>