博客
关于我
判断数据的现象(递增、减小、稳定、无序)
阅读量:690 次
发布时间:2019-03-17

本文共 356 字,大约阅读时间需要 1 分钟。

在嵌入式行业中,判断数据的趋势往往是至关重要的。以下程序可以用来判断一组数据是递增、递减、稳定还是无序。该程序通过对数据点之间的相对关系进行分析,来确定整体趋势。

程序的主要逻辑如下:首先,定义了一个枚举类型来表示不同趋势的状态。然后,为一组数据的趋势判断提供了一个递归函数。函数ordered()接受数据指针和数据长度作为输入,返回一个代表趋势的整数标识。

当数据只包含一个元素时,函数直接返回稳定状态。对于多于一个元素的数据,函数首先比较第一个和第二个元素之间的关系。如果有递增、递减或稳定迹象,函数会继续分析剩余的数据。如果发现矛盾的趋势,则返回无序状态。

程序的主函数main()中,定义了一组示例数据并调用了ordered()函数来获取趋势信息,最后输出结果。这种方法可以有效地分析数据序列的趋势特征。

转载地址:http://sljhz.baihongyu.com/

你可能感兴趣的文章
NLog 自定义字段 写入 oracle
查看>>
NLog类库使用探索——详解配置
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 模型中的偏差和公平性检测
查看>>
Vue3.0 性能提升主要是通过哪几方面体现的?
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
nmap 使用方法详细介绍
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
nmap指纹识别要点以及又快又准之方法
查看>>
Nmap渗透测试指南之指纹识别与探测、伺机而动
查看>>